
Gaining control of rAAV production: real-time monitoring with Raman Spectroscopy

B L CARNIO¹, J WAGNER¹, M BOSCHER¹, J BABIC¹, D BITNEL¹, T FISCHER¹, S NDONWI¹, H EL RADI², L SAVARY², C ZACH¹, B HAGER¹, S RITTER¹, M GORA¹, T KLOETZLER¹, M WEIDLER¹, A SCHOBERTH¹, <u>M LANGHAUSER¹</u>, M HOERER¹, K HELLER¹, A YOUSSEF¹

¹Ascend Advanced Therapies GmbH, Germany ² Merck KGaA, Darmstadt, Germany

Aim higher

Poster 1941

- rAAV9 vectors encoding a 3kb SEAP reporter gene.

Data Analysis

> All runs used our EpyQ® split-2 plasmid system designed for Enhanced Performance regarding Yield and Quality, combined with PEI transfection to produce rAAV2 and

> The experiments were operated under different feeding strategies to enhance model

Raman spectra pre-processing followed by Principal Component Analysis (PCA) were performed to identify and handle outliers. Normalization algorithms were applied to

Time-specific spectral windows were used to enhance model robustness by restricting analyte quantification to biologically relevant process phases —pre-lysis for metabolic profiling and post-lysis for capsid detection— thereby minimizing spectral noise and improving predictive reliability. This was performed at stage 8 according to the

nk bioreactor Real-time monitoring AAV9 Capsid Titer		
¥ ¥ ¥ ¥	F RPD: 0.29 RE: 60%	
Process time (hours)		

Summary

By introducing in-line capsid quantification, DSP can be directly started, avoiding the need for in-process sample analysis using

Despite having metabolite and cell density measurements applicable to both presented serotypes and bioreactor scales, the rAAV2-based capsid titer model could not predict rAAV9 capsid titer, demonstrating its serotype specificity.

Our collaborative innovation, leveraging ProCellics[™] Raman Analyzer data, yielded a representative real-time monitoring model for scalable rAAV production. While the models for glucose, lactate, glutamine, ammonia and VCD are broadly applicable across serotypes, the capsid titer model requires

> This innovative process monitoring method enables seamless platform development and process validation, providing robust and scalable solutions for a smooth transition to next-generation technologies, enhancing efficiency and confidence.

> www.ascend-adv.com ahmed.youssef@ascend-adv.com

